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Impaired (‘diabetic’) insulin signaling and action
occur in fat cells long before glucose intolerance — is
insulin resistance initiated in the adipose tissue?
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This review postulates and presents recent evidence that insulin resistance is initiated in the adipose tissue and also suggests that
the adipose tissue may play a pivotal role in the induction of insulin resistance in the muscles and the liver. Marked impairments
in insulin’s intracellular signaling cascade are present in fat cells from type 2 diabetic patients, including reduced IRS-1 gene and
protein expression, impaired insulin-stimulated PI3-kinase and PKB=Akt activities. In contrast, upstream insulin signaling in
skeletal muscle from diabetic subjects only shows modest impairments and PKB=Akt activation in vivo by insulin appears normal.
However, insulin-stimulated glucose transport and glycogen synthesis are markedly reduced.

Similar marked impairments in insulin signaling, including reduced IRS-1 expression, impaired insulin-stimulated PI3-kinase
and PKB=Akt activities are also seen in some (�30%) normoglycemic individuals with genetic predisposition for type 2 diabetes.
In addition, GLUT4 expression is markedly reduced in these cells, similar to what is seen in diabetic cells. The individuals with
reduced cellular expression of IRS-1 and GLUT4 are also markedly insulin resistant and exhibit several characteristics of the Insulin
Resistance Syndrome.

Thus, a ‘diabetic’ pattern is seen in the fat cells also in normoglycemic subjects and this is associated with a marked insulin
resistance in vivo. It is proposed that insulin resistance and=or its effectors is initiated in fat cells and that this may secondarily
encompass other target tissues for insulin, including the impaired glucose transport in the muscles.
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Introduction
Estimation of whole-body insulin sensitivity and action with

the euglycemic clamp technique is mainly a reflection of the

glucose disposal by the muscles (60 – 70%).1 The adipose

tissue only accounts for �10% of the insulin-stimulated

whole body glucose uptake and the liver for �30%. Thus,

an impaired insulin-stimulated glucose disposal during a

euglycemic clamp is mainly due to a reduced glucose

uptake by the muscles. This fact has led to the extrapolation

that whole body insulin resistance not only occurs in, but

also starts in, the muscles. This is an unwarranted extrapola-

tion, which may lead us wrong in the search for patho-

genetic mechanisms.

Animal models, both transgenic overexpressing and gene

‘knock-outs’, have provided us with exciting insights into

the phenotypic consequences of specific gene overexpression

or ablation. Gene ablation of the important docking proteins

IRS-1 and IRS-2 have produced growth-retarded and mark-

edly insulin-resistant (IRS-1)2 or insulin-resistant and dia-

betic animals with an impaired insulin secretion (IRS-2).3

Muscle-specific GLUT4 ablation leads to insulin resistance,4

but so does adipose-specific GLUT4 gene knock-out, in fact

to what appears to be a similar degree.5 This finding is

obviously not congruent with an unimportant role of the

adipose tissue for whole-body glucose disposal. Another

interesting finding in the animal models is that muscle

GLUT4 depletion is associated with a marked increase in
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glucose uptake by the fat and with an expanded adipose

tissue mass.6 This cross-talk between tissues supports the

possibility that insulin resistance may be initiated in one

tissue which then is followed by a series of events in other

tissues=organs.

This brief overview summarizes our recent findings in

human subjects showing that insulin resistance and an

impaired insulin effect occur early in the adipose tissue; in

fact, long before glucose intolerance develops. It is then

speculated that the adipose tissue may initiate and=or be

the initial target organ for insulin where insulin resistance

develops. Recent data where insulin signaling and action

have been studied in the target tissues in man in insulin-

resistant states, in particular in type 2 diabetes, will be

reviewed. Since virtually nothing is known about insulin

signaling downstream of the insulin receptor in human liver,

comparisons can only be made between skeletal muscle and

adipose cells.

Type 2 diabetes
The effect of insulin, either infused in vivo or added in vitro,

on glucose transport and insulin signaling in skeletal muscle

from type 2 diabetic subjects has been recently reviewed.7

The salient findings are an impaired insulin-stimulated tyr-

osine phosphorylation of IRS-1, associated with �50%

reduction in PI3-kinase activity. However, the downstream

activation of the important serine=threonine kinase PKB=Akt

appears to be normal8 or only impaired in the presence of a

supraphysiological insulin concentration added in vitro.9 The

impaired tyrosine phosphorylation does not appear to be

due to a reduced IRS-1 protein expression, although lower

levels have been seen in some cells in gestational diabetes.10

An increased serine phosphorylation of IRS-1 may reduce the

insulin-stimulated tyrosine phosphorylation,11 but it is cur-

rently unknown whether this is the case in type 2 diabetes.

Taken together, the data suggest that the activation of PI3-

kinase, and presumably the generation of PI3, 4- and PI3, 4, 5

phosphates, is reduced but still sufficient to allow a normal

activation of the downstream signaling events. This has led

to the conclusion that insulin resistance in skeletal muscle is

caused by an impaired activation of effector or signaling

molecules downstream of PKB=Akt.8

Insulin-stimulated glucose transport is also reduced in

skeletal muscle from type 2 diabetic subjects.12 Surprisingly,

however, recent in vitro studies have shown that this appears

to be mainly caused by a ‘glucose toxicity’. Preincubating the

tissue biopsies for only 2 h at a high glucose concentration

impairs the effect of insulin,13 while preincubating diabetic

muscle strips for 2 h at a physiological glucose concentration

normalizes the insulin response.13 However, it is also possi-

ble that the preincubation period overcomes the effect of

other circulating antagonists to insulin action such as TNFa,
the interleukins and=or free fatty acids (FFA).14,15 Taken

together, currently available data suggest that there are

only modest, and obviously not functionally critical, impair-

ments in insulin signaling upstream of PKB=Akt in skeletal

muscle from type 2 diabetic subjects. Furthermore, the

impaired insulin-stimulated glucose transport appears to be

rapidly reversible in vitro by preincubating the tissue samples

in fresh medium containing a physiological glucose concen-

tration. These findings are also in agreement with the con-

sistent demonstration that both the GLUT4 protein content

and mRNA expression are normal in skeletal muscle in type 2

diabetes.7,16

The situation is quite different in the adipose tissue.

Adipocytes from type 2 diabetic subjects also have a

marked reduction in the insulin-stimulated tyrosine phos-

phorylation of IRS-1. However, this is mainly due to a �70%

reduction in IRS-1 protein expression.17 Similarly, total PI3-

kinase activity is reduced �70%. In contrast, IRS-2 expres-

sion is normal and this molecule also becomes the main

docking protein for insulin-stimulated PI3-kinase activa-

tion.17 In agreement with the reduced PI3-kinase activation,

the downstream activation of PKB=Akt is also markedly

impaired, mainly due to a major reduction in the insulin-

stimulated serine phosphorylation.18 Glucose transport in

response to insulin is also reduced in fat cells from type 2

diabetic subjects due to both the impaired insulin signaling

as well as a marked reduction (� 70 – 80%) in GLUT4 protein

and mRNA expression.17,19,20

In contrast to muscle cells as discussed above, preincubat-

ing human fat cells for 16 h at physiological (5.6 mmol=l) or

high glucose concentrations (16.8 and 25 mmol=l) does not

impair the acute stimulatory effect of insulin on glucose

uptake (Figure 1) nor does preincubation of diabetic cells

at a physiological glucose concentration restore the acute

insulin response after 6 h (unpublished observations).

This is consistent with the reduced GLUT4 protein express-

ion in adipocytes which probably requires a longer time

for reversal.

Table 1 summarizes the salient differences in the upstream

insulin-stimulated events in muscle and fat from individuals

with type 2 diabetes compared to non-diabetic subjects.

Normoglycemic, insulin-resistant states
Studies with skeletal muscle from non-diabetic relatives to

type 2 diabetic subjects have shown that both insulin-stimu-

lated glucose uptake and glycogen synthesis are reduced.7,20

Some defects in insulin signaling have been reported and

they appear to be similar to those seen in type 2 diabetes.

These perturbations include a modest reduction in insulin

receptor phosphorylation and tyrosine kinase activity,21 in

insulin-stimulated IRS-1 tyrosine phosphorylation22,23 and

PI3-kinase activity.22 – 24 However, IRS-1 protein expression

appears to be unchanged,22 – 24 but a small (�30%) reduction

in IRS-1 protein expression was reported in morbidly obese

subjects.25 Insulin-stimulated downstream activation of

PKB=Akt appears to be normal or only moderately

decreased.22,23 Cultured skeletal muscle from insulin-

sensitive and -resistant subjects showed no impairments
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in the ability of insulin to increase the receptor tyrosine

kinase activity, IRS-1-associated PI3-kinase activity or serine

phosphorylation (ie activation) of PKB=Akt.26 In contrast,

an impaired glucose transport and glycogen production

in response to insulin have been documented in cultured

skeletal muscle cells from non-diabetic insulin-resistant sub-

jects.27 Taken together, although insulin-stimulated glucose

transport and glycogen synthesis are reduced in skeletal

muscle from both diabetic and non-diabetic, insulin-

resistant subjects, only modest defects have been found

in the intracellular signaling events. These findings are also

in agreement with the modest upstream impairments in

insulin signaling in type 2 diabetes as discussed above.

In contrast, we have recently found that a cohort of

healthy subjects, particularly in those with a marked genetic

predisposition for type 2 diabetes (two first-degree relatives

with the disease), exhibit similar abnormalities in insulin

signaling in the adipocytes as those seen in diabetic cells.28,29

Thus, IRS-1 expression was reduced �70% (Figure 2), and

insulin-stimulated PI3-kinase activity and PKB=Akt serine

phosphorylation and activity were similarly reduced.29 Inter-

estingly, insulin-stimulated glucose transport and GLUT4

expression were also reduced to a similar extent as in diabetic

cells.29 These abnormalities were seen in �30% of indivi-

duals with a marked genetic predisposition for type 2 dia-

betes but only in �5% of the subjects with no known

diabetes heredity. We also found similar abnormalities in

some morbidly obese subjects (Figure 2).28 Unfortunately, no

information was available on diabetes heredity in this group.

However, since diabetes heredity by itself is associated with a

higher body weight and obesity,30 – 32 as well as an increased

weight gain in prospective studies,31 it is feasible that the

obese individuals with low IRS-1 expression in the fat cells

also had a genetic predisposition for type 2 diabetes. We

found no association between a low IRS-1 expression and the

common Arg972 Gly polymorphism of the IRS-1 gene.28

Thus, both low IRS-1 and GLUT4 gene and protein expres-

sion are seen in fat cells from type 2 diabetic subjects as well

as in a group of healthy individuals, mainly those with a

marked heredity for type 2 diabetes. The downstream signal-

ing events for insulin are also similarly impaired in these

groups. The healthy individuals with these cellular abnorm-

alities are also markedly insulin resistant in vivo, have higher

fasting insulin and triglyceride levels, thus exhibiting several

signs of the Insulin Resistance (or Metabolic) Syndrome.33

Furthermore, the fact that these individuals were resistant to

the ability of insulin to stimulate glucose uptake in vivo

Figure 1 Glucose uptake by explants of human subcutaneous adipose
tissue before (initial) or after culture for 16 h at 5.6, 16.7 or 25.0 mM
glucose. After the culture period, isolated cells were incubated with
6.9 nM insulin and 0.15 mCi [14C-U] glucose for 60 min to determine
glucose uptake. Data are means� s.e.m. of four seperate experiments.

Table 1 Comparison of the upstream insulin-stimulated signaling
events in muscle and fat from individuals with type 2 diabetes
compared to healthy subjects

Signaling molecules Muscle Adipocytes

pY-insulin receptor + ) + )

pY-IRS-1 + + + +

IRS-1 protein ) + +

PI3-kinase activation + + +

PKB=Akt activation ) (+ ) + +

Glucose transport + + + +

Glut4 protein=mRNA ) + +

) , normal; + reduced; + + markedly reduced (< 50% of normal);

pY¼phosphotyrosine.

Figure 2 IRS-1 protein expression in fat cells from obese subjects or
non-obese healthy relatives to subjects with type 2 diabetes. Data
reproduced from Carvalho et al28 by permission.
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during a euglycemic clamp shows that muscle uptake was

reduced, probably due to an impaired glucose transport.34

It is unlikely that the molecular abnormalities seen in the

adipose cells are secondary to the insulin resistance and

hyperinsulinemia. Although IRS-1 protein can be reduced

by prolonged and marked hyperinsulinemia in vitro,35 many

obese subjects had both hyperinsulinemia and normal IRS-1

expression. Furthermore, the reduced GLUT4 expression

cannot be explained by this possibility.

As discussed above, the major consistent finding in

muscle in type 2 diabetes seems to be an impairment (rapidly

reversible?) in insulin-stimulated glucose transport and gly-

cogen synthesis, while PKB=Akt activation is normal.

Although this does not exclude major abnormalities in

other, still undefined, molecular targets of insulin action in

muscle like c-Cbl-associated protein (CAP),36 it is also clear

that there are major differences in this regard between fat

and muscle. Thus, a low IRS-1 expression in the adipocytes is

a biomarker of insulin resistance and propensity for type 2

diabetes.28

A key question, then, is why there are these differences in

insulin signaling and gene and protein expression between

two major target tissues for insulin. Although there are no

firm answers to this, one possibility is that the adipose tissue

initiates and=or is the initial tissue where insulin resistance

develops. This could then lead to a series of events whereby

insulin resistance is induced or augmented in muscle and

liver.

One possibility is that the reduced IRS-1 and GLUT4

expression in the fat cells by itself leads to a reduced

whole-body insulin sensitivity. As discussed above, a reduc-

tion in the relatively small glucose uptake by the adipose

tissue (�10%) is unlikely to lead to a marked insulin resis-

tance in vivo. However, by the same token, specific GLUT4

deletion in the adipose tissue produced animals with a

marked insulin resistance.5 Interestingly, both the liver and

skeletal muscle were insulin resistant in vivo while insulin-

stimulated glucose uptake was normal in skeletal muscle in

vitro.5 This discrepancy suggests that circulating antagonists,

possibly induced by a low glucose uptake in the adipose

tissue, accounted for the insulin resistance in liver and

muscle in vivo. Since there were no differences in circulating

FFA levels between the wild-type and GLUT4-depleted ani-

mals,5 other possibilities have to be considered. The endo-

crine function of the adipose tissue provides a possible

explanation to this discrepancy through, for instance, an

increased production of cytokines like TNFa, IL-6 or resistin.

Interestingly, experimental studies in 3T3-L1 cells have

shown that chronic exposure to TNFa reduces both IRS-1

and GLUT4 expression.37 Similarly, we have recently found

that IL-6 is capable of producing the same effects (Rotter et al,

submitted for publication). Thus, low IRS-1 and GLUT4 may

be markers of and=or lead to an excessive production of IL-6

and=or TNFa or other cytokines or hormones, which both

reduce the expression of these proteins in the adipocytes in

an autocrine or paracrine fashion as well as inducing insulin

resistance in muscles and, possibly, the liver. In addition,

cytokines like TNFa have been found to markedly increase

lipolysis and FFA release, at least in part through a reduced

perilipin expression38 and decreased Gi protein expression,39

further augmenting the impaired cellular insulin signaling

and glucose uptake.15

Recently, the adipose tissue was found to secrete another

peptide, resistin,40 which may be related to the insulin

resistance in obesity. A similar protein, called FIZZ141 was

previously isolated from inflammatory cells in pulmonary

lavage from animals with experimentally induced asthma.

However, the overall role of resistin in insulin resistance in

man is conjectural. Two recent studies were unable to detect

resistin expression in human fat cells42,43 irrespective of

degree of obesity42 or insulin resistance.43

An additional possibility is that low IRS-1 and GLUT4

expression in the fat cells is associated with elevated lipolysis

and circulating FFA levels which, in turn, impair insulin

action in vivo.15 However, fasting FFA levels are not different

in these subjects when compared to carefully matched indi-

viduals with a normal expression of these proteins but the

ability of insulin to lower the FFA levels is, as expected,

impaired.

Although there is much evidence to support an endocrine

cross-talk between fat and muscle (and liver?), it is currently

unclear how such a mechanism can explain the fact that

lipoatrophy is also associated with insulin resistance and

diabetes. In one animal model of lipoatrophy, it was found

that the insulin resistance was probably due to lack of

leptin.44 Administering leptin to these animals markedly

improved insulin sensitivity, possibly due to an increased

oxidation of the excessively accumulated lipids in muscle

and other tissues.45 In contrast, in another animal model of

total lipoatrophy, leptin was unable to improve the insulin

resistance but transplantation of fat led to a marked

improvement.46

Thus, the adipose tissue not only produces peptides which

can elicit insulin resistance but also hormones which can

improve insulin resistance such as leptin45 and adiponec-

tin.47 – 49 Circulating adiponectin levels are positively corre-

lated to insulin sensitivity and negatively related to BMI.48

Furthermore, administration of adiponectin to animal

models of insulin resistance and diabetes improves insulin

sensitivity.49 Thus, it is likely that the balance of the produc-

tion of hormones from the adipose tissue that accentuate

(like IL-6 and TNFa) or alleviate (like leptin and adiponectin)

insulin resistance, as well as eliciting other effects, is due to

several factors including adipose mass, nutritional state and

genetic background.

Effects of thiazolidinediones on IRS-1 and IRS-2
expression
Thiazolidinediones (TZD), the novel insulin sensitizers used

in the treatment of type 2 diabetes, are ligands for PPARg
which is predominantly expressed in the adipose tissue.50
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Support for the pivotal role of the adipose tissue for the

insulin-sensitizing effect of TZD comes from the recent work

of Gavrilova et al.46 These authors found that TZDs lost their

beneficial effect on insulin sensitivity in totally lipoathropic

mice while the lipid-lowering (probably PPARa) effect

remained. Thus, an interesting question for us was to exam-

ine whether TZD could restore or increase the expression of

IRS-1 in the fat cells. We addressed this by using both

differentiated 3T3-L1 adipocytes as well as human adipose

tissue in culture with or without the addition of different

PPAR-ligands. However, we found no evidence that IRS-1 was

a target for TZD but, interestingly, the IRS-2 gene was clearly

activated by PPARg but not PPARa ligands.51 IRS-2 mRNA was

rapidly increased (within 4 h) and remained elevated over

the observation period of 48 h. Furthermore, IRS-2 protein

was markedly increased.51 Thus, these data show that TZD

increase IRS-2 gene and protein expression and suggest that

this may be one mechanism for the insulin sensitizing effect

of these drugs. This possibility is further supported by our

recent finding that IRS-2 expression was also increased

by pioglitazone in cultured human fat cells from type 2

diabetic (and, thus, having low IRS-1 expression) individuals

(Figure 3).

IRS-2 is the main docking protein for PI3-kinase activation

in fat cells when IRS-1 is markedly reduced, such as in type 2

diabetes,17 as discussed above. Similarly, IRS-2 functions as a

major docking protein in cells from IRS-1 ‘knock-out’ ani-

mals.52 In addition, IRS-2 appears to be the predominant IRS-

molecule expressed in liver and b-cells3,53 and abnormalities

in these organs also appear to be a major cause of the ‘type 2’

diabetes in IRS-2 ‘knock-out’ animals.54 We have recently

examined cellular IRS-2 levels in ob=ob animals treated for 6
Figure 3 Effect of pioglitazone (10 mM) on IRS-2 mRNA expression in fat
cells from a type 2 diabetic individual incubated for 16 h as indicated.

Figure 4 Potential sequence of events whereby the adipose tissue can induce insulin resistance.
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days with TZD and also find an increased expression in fat

cells (unpublished observation). However, it is currently

unclear if TZD also increase IRS-2 expression in muscle,

liver and b-cells but this is the subject of an ongoing study.

An increased IRS-2 expression in fat, liver and=or muscle

could substitute for the reduced IRS-1 protein and=or the

impaired phosphorylation and activation by insulin, leading

to an increased insulin sensitivity. Furthermore, a putative

increase in IRS-2 expression in b-cells by TZD may be impor-

tant for both growth and function.55 However, it would seem

an attractive therapeutic possibility to have agents which

directly increase IRS-1 expression since this docking protein

is the major activator of PI3-kinase in response to insulin in

human fat cells and, in contrast to IRS-2, is markedly reduced

in adipocytes in insulin-resistant states. We here suggest that

the tissue-specific reduction in gene and protein expression

of IRS-1 and GLUT4 may play an important role in the

development of the whole-body insulin resistance either

directly or indirectly by an association with an increased

production of cytokines and=or other insulin-antagonistic

factors (Figure 4). TZD may alleviate or normalize this effect

by increasing IRS-2 expression in fat cells and, possibly, also

other target tissues for insulin and the pancreatic b-cells.

Although this review is focused on recent findings relating

insulin resistance to an early impaired insulin signaling and

action in fat cells through a reduced IRS-1=GLUT4 expres-

sion, and the effect of TZD on IRS-1=IRS-2, TZD clearly also

elicit other important changes in the adipose tissue. These

include the recruitment of new and smaller fat cells through

an increased adipogenesis, a process where both IRS-1 and

IRS-2 play a critical role,56 altered expression of genes

directly or indirectly related to insulin action,57 including

an inhibition of cytokine release by the fat cells.57,58 In

addition, the ability of TNFa to stimulate lipolysis and FFA

release is also antagonized by TZD.38

However, insulin is a key regulator of lipolysis and circu-

lating FFA levels in vivo and the antilipolytic effect of insulin

is mediated through the activation of PI3-kinase.59 Thus, a

reduced IRS-1 expression and insulin-stimulated PI3-kinase

activity will also link insulin resistance, as defined by a

reduced insulin-stimulated glucose uptake, to an impaired

ability of insulin to suppress lipolysis.
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